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The plane state of stress of an infinite elastic wedge reinforced by an infinite 
elastic bar along the bisectrix, whose stiffness varies as r”’ (r is the distance from 
the wedge apex), is considered. The problem is reduced to a first order difference 

equation for the displacement o and is solved in closed form. The solution re- 
tains its meaning for w = k 05, when the mentioned fundamental problem for 
the reinforced domain goes over into a mixed problem for the homogeneous do- 
main, Therefore, the method pro-d, which is applicable also to problems for 

rectangular, cylindrical and conical domains reinforced by bars, plates, circular 
slabs and shells of variable stiffness, is more general in specific respects than the 
Wiener-Hopf method. 

Homogeneous [l-4] and inhomogeneous [5, S] problems for an elastic wedge 
reinforced by constant stiffness bars have been studied earlier by using difference 
equations. Corresponding heat conduction and electromagnetic wave diffraction 
problems on a wedge have been solved in [7, 83, etc. 

1. Let an elastic wedge-shaped plate 0 < r < 00, -a << 8 < a of thickness h 
be welded completely along the bisectrix to an infinite elastic bar. The bar tensile and 
bending stiffnesses 201 (r) in the r, 8 plane are expressed, respectively, by the equa- 

tiOilS 
& (F) = fir + yr’+O (1.1) 

D, (r) = p?-S + yfl+o (1.2) 

where p > 0, y > 0 and o are any real numbers, where different numbers in (1.1) and 

(1.2) can be denoted by identical letters. The magnitudes of forces applied to the wedge 
or bar at the points r = 1, will be denoted by the letters M, N, s with subscripts s, 
while the subscripts 0 and 00 correspond to points of the wedge r == 0 and of the bar 
r = cxz (see Fig. 1; the notation for the forces applied at the points r = 1, and r = 00 
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and shown by arrows is analogous to that mentioned for the point r = 0 and is omitted 
in the Figure). 

Let us separate the problem posed into symmetric and skew-symmetric, Then the 
boundary conditions for the right half of the wedge decompose into three groups: gene- 
ral conditions 

Fig, 1 

the contact conditions with the bar stretcb.ed without bending 

v (r, 0) = 0 

+ h(r) G& 24 (r, 0 -+ hf,e (r, 0) = - S36 (r - hi) 

~~~~~~r,O~~r = Ss-&- S, 
ii 

and contact conditions with the bar bent without stretching 

u (r, 0) = 0 

hoe (r, 0) = N36 (r - 13) 

hl.,(r,O)cZr = -NNa--Ns 

h 1 bg (r, 0) rdr = iIf.+ 
0 

NJ2 - N,l, - M, 

(1.3) 

(1.41 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

Here 6 (r) is the Dirac delta function. 

2. Let us seek the solution of the symmet- 
ric problem as integrals [5] evaluated taking 
account of the boundary conditions (1.3) and 
(I.41 
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A$ = cm 2pu -I- p cos 2cc, 3 
- A$ = sin2pb+psin2&, x=-f$ (2.21 

13 tp) = WV (A tp) (Ax+ - p + x) - G.31 
h-lpwlZ,P INI sin (p - 1) dc - S1 cos (p - 9) ct]} 

where Y is the Poisson’s ratio, G is the shear modulus of the plate, and the contour L 
is the line Re p = A. 

We substitute (2. I)-( 2,3) into condition (~5) and we group members with identical 
powers of r, In the first integral of the equality obtained 

i 
Eii- S-I 

1” 

~--h(l+x)PlA(~)+8~~(p)-SS,1,~)~f 2GAzf c2,41 

S[ 

TP(P 
2ni -“‘A”At~)~7(~--o)P(~)]~= 0 2G& 

q (P) - (2GhAa+)-’ (p -I- x + Al- + A,+) dip [S, CQS (p - 1) a - 
N, sin (p - 1) a] 

A, = 4x sina pa + 4~” sin* a - (1 + ~1% 

Denoting the contents in the braces by C (p) and replacing the argument p by p - o, 
we shift the contour L along the real axis by a quantity w and denote it by L,. Let us 

rewrite this equality in the form 

F (p) = f3-lyp-l (co - p)[l - 2Gh (1 + x)(~pW%+l-” (2.9 

f w = F b%%* - 2Gh (1 + x)A,+A8-‘q (p>j (2.7) 

Let us assume the function C (p> to be (1) regular, and (2) to tend to zero as 
1 Im p 1 -+ 00 in a strip bounded by the lines Re p = h and Re p = 2, - o , 
Then, according to the Cauchy theorem, the contour L, in (2.5) can be replaced by L 
and the problem reduces to a first order difference equation 

c(P-- d+=Up)U!+t-f(p) @EL) (2.8) 

The form of its solution and the position of the contour L are connected with the sign 
of the parameter w, and the cases ‘(I, = 0 and y = 0 are perfectly elementary, The 

uniqueness of the solution of the problem (2.8) is established by using the analog of the 
Liouville theorem (see Theorem 7 in Sect. 101 of ES]> exactly as the uniqueness of the 
solution of the Riemann problem [IO]. We shall always represent the coefficient of the 
problem (2.8) as the product F (p) = F, (p) F, (p), where FI (p) is an elementary 
function ; the function PS (pp) satisfies the HGlder condition on L and has the index 

x = 0. 
Let o ( 0. Setting h ( 0, S, = 0, we consider different values of the parame- 

ters p and y. For p > 0, y > 0 we obtain 

F, (PI = B-lvP-l (a - PI (2.9) 
&-I {P) = 1 - 2 Gh (i --j- x) ~-1p-1A2’AS-1 
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F, (iy) = 1 + x1 1 y 1 -l + 0 (e-8algi), x1 = Gh (1 + SC)~~-~X-~ 

Let us write the canonical solution CO (p) of the homogeneous equation (2.8) by tak- 
ing account of the conditions (1) and (2), as 

CO 0) = nw-Q_r (6 / r)Pl” sin-l (no-ljp) X (p) (2.10) 

where the function X (p) is expressed in the Bantsuri form [3] 

X (p) = Fa-l (p) Y (p) (0 < Re p < O), X (P) = 3’ fP> (2. II) 

(O<R~P<--~Q 

~(p)=exp{--&- 7 ctp‘n(;i,p’ lnF,(t)dt} 
--ion 

(2.12) 

According to the asymptotics (2,9), the integral (2.12) exists only in the sense of the 

Cauchy principal value, and in this sense possesses exponential convergence at infinity. 

By virtue of the same conditions (l),(2) and in connection with the presence of asimple 
pole at the point p = 0 for the function f (JP) , the solution of the inhomogeneous 
equation (2.8) becomes [5] 

c (p) = Ai& (p) + c,, cp) 2 (p), CXI (PI = c, (PI cos (~~-lP) (2.13) 

z(~)= w(p)-g(p) (w<Rep,(O), z(~)=w(P) (2.14) 

(0 < Re P < - 0) 
im 

g @I dt 
w(P) = -& \ ,yin(n]oI-l(t-p)j ’ g@)= -C~o$L) (2.15) 

-_im 

where Crs 01) is the solution of the homogeneous equation 

cr 0, - 0) = - F cp) c, (p) (PeQI 

We find the value of the constant A from the condition (l-6), whose left side is a 

transform of the function rrs (r, 0), which equals (1 + X) p+A (p) at p = 0, and 
the ~~0~ force 8, in the right side is determined by the equalities 

s_dm& $+-$+P=-t=zPE(P) (2.16) 

E @) = (2GA,+)-$A& (P) + q (P) 

Here the contour integral has been replaced by a residue series at the poles to the right 

of the imaginary axis. Expression A (p) in terms of C (p) and passing to the limit as 
p -+ 0 in (2.13), we obtain 

- Ss {[ 1 + 2Gh (1 + x)-1B-1(2a + sin 241 Y (-O))-l (2.17) 

We investigate the nature of the contact stresses at the wedge apex. Closing the con- 
tour L in (2.1) on the left by a system of semicircles passing between the poles of the 
transform zre (T, e), we obtain as r--t 0 

tre (r, 0) = Res 
2.4nG (1 + x) (p / rJP ““Aa+Y (P) 

8oA.s sin (no-*p) rP+r 1 p=jL 

(2.18) 
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Here l.~ is the first pole of the function enclosed in the square brackets. It can be either 
the first zero p = o of the function sin (no-lp) or the first zero p = a, of thefunc- 

tion A, (there is a table of values of a, in [ll]) . Hence, if 0 1 - 1, then stresses 

zre (r, 0) = 0 (r-r-1) growing without limit originate at the apex for any a , where 
p is the closer point of’ p = o and p = a, to the imaginary axis. If o < -1, 

then l,~ = ul, and the mentioned singularity holds only for a > a*, where a* - 

arc sin (1 f v)-“g [ll]. When ret oo, then zro (r, 0) = 0 (r-p-1); here I.I is se- 
lected from the numbers ctf and a?, the first pole of the fur-muon F, (p) for Re p 1 0. 

Let fl = 0 and y > 0. Taking account of the change in (2.6). we obtain 

F,(P) = - F, (iy) = 1 + 0 (,@~lul) + 0 (e-clw-‘!ll) (2. 19) 

(2.20) 

The rest of the solution (2.11) - (2.15) is conserved, and the contact stresses at the 
wedge apex retain their character. The bar stiffness is now zero at infinity, the whole 
principal vector of the external load is transmitted to the wedge. According to (2. 16), 
S, = 0, and we have in place of (2.17) 

A = - sax-1 (0) - 2 (0) (2.21) 

This essentially rational solution becomes inapplicable for o = - 00. In order forthe 
appropriate passage to the limit to be realizable, the more awkward formulas 

F,(p) =~h;7+v, Fz(P) = -w 
Gh (1 + x) 

G(P) = [ yx ] 

pi/w no-‘PT (P) x (a) 
sin (JUtr’p) 

(2,221 

(2.23) 

l- 
ns - yzz - P H I 1 2P/~+l 

-- 
0 2s > 

should be used in place of (2.19) and (2.20). They yield the exponential convergence 
of the integral (2.12) and do not alter the expressions (2.21). A solution of the problem 

c(P-- o) = F, (p) c (p) has be en obtained by the method of Barnes who investi- 

gated (2.8) in 1904 [12]. The case 8 > 0, y = 0 is equivalent to the elementary 

caSe0 =Oforanyo. 
Let us construct the solution for 0 > 0. The bar stiffness in r now grows so that the 

displacements of the wedge and bar caused by the effect of the lumped forces S, and 
S, can be matched at the point F = 0 , and the principal vector of the given load at 
infinity is transmitted entirely to the bar, therefore, h > 0. 

For fi 1 0, y > 0 , only (2.11) and (2,14) change in the solution (2.9) - (2.16) 

X (P> = F2 -l Y(p), Z(p) -2 W(p) - g(p) @<Rep<@) (2.24) 

x (PI = y @I, 2 (PI = W(p) (--(o<Rep<o0) 

From the equalities 
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sm = --y lim (p - o)E (p) = Y (-0) IA + W (-0)l (2.25) 
P-r0 

and from the equilibrium condition for the wedge bar system 

S, + S, - S, - S, - IV, sin a + S, cos a = 0 

we obtain 
(2.26) 

A = (S, + S, - S, + IV, sin a - S, cos a)Y-l (-0) - W (-0) t2s2V 

Let b = 0, y > 0. Then the solution of the problem (2.8) which satisfies conditions 

(1) and (2) is determined by (2.13),(2.20),(2.24),(2.19),(2.12) and (2.15). In order to 
establish a connection between the quantities S, and S,, let us use condition (1.6) 

according to which 

Ss = ]im [h (1 + x) pA (p)I + S, + S, = -C (0) + S, 
Q+O 

Complting C (0) by means of (2.13), etc., and taking account of (2.25), we obtain 

c (0) = s, = Y (-0) [A + W (-O)l (2.28) 

Therefore, S, = 0 for any A. The force applied to the reinforced wedge is transmit- 

ted completely to its apex, is the force So. Again (2.27) follows from (2.28) and (2.26). 

The equalities (2.22) and (2.23) must be taken instead of (2.19) and (2.20) in the solu- 
tion which remains meaningful for 0 = a~ - 

3, Let us consider the skew-symmetric problem. By virtue of (1. ‘7), we have for the 
displacements (2.1) 

A (p) = -(A%-)-’ {B (p) (AI- + p + x) + h-lp-lZIP tN,X (3.1) 

cos (p - 1) a - S, sin (p - 1) al} 

Substituting (2.1) into (1.8)) introducing the new unknown function 

C (p) = B (p) [(2GA,-)-lfJpa (p” - i)& + h (1 + X) PI - 

BP2 0" - 9 Q (PI - N3bP 

(3.2) 

and assuming that it satisfies the previous conditions (l), (2) in the previous strip, we 

obtain (2.8) with the following values of the functions therein: 

F (P) = 
y (P - 0) (P - 0 - 1) 

$p (1 - p) [f + 2Gh (1 +x) 8-rp-’ (p2 - f)‘Aa-As-‘] (3.3) 

f (p> = - F b) WsV’ + 26 h (1 + 4 p &-As-% @)I (3.4) 

q (p) = (~G~P)-~Z,~ {[IV, cos(p-_)a-SlsinCp-l)alX t3a5) 

(A2-)-1 + N, sin (p - l)a + S1 cos 0, - l)a} 

Let O< -l.Thenh<0,~,=No=0,andif/3>0,y)0,then 

F, (p) = -_B-l7/p-l (p - I)-‘@ - o)(p - 6.1 - 1) (3.6) 

F2 (P) = F b)F,-' (P) 

The general solution of (2.8) is 

c (p) = c, @){A, + &co-r ctg [no-f(p - 1)1+ cos (no-lp) 2 (P)) (3.7) 
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C, (p) = no-lp (p - 1)@ / Y)~‘” sin-l (no-lp) X (p) (3.8) 

where the functions X (p) and 2 (p) are determined by (2.11) - (2. 15). Let us find 
the constants A 1 and A 2. Similarly to (2.16). we have 

(3.9) 

Jim ~(1 - p2):[B (P> (2GA2T1 - 4 @)I 

From this and from conditions (1.9) and (1. lo), whose left sides equal h (1 + x) pB(p) 

for p = 0 and p = 1, there follows: 

A 
1 

= N2 + NS - (1 + x)-l (Nl cos a + Sl sin c() 

~wI~~(o)--1l 
+ A,no-l ct,g no-l (3.10) 

A, = (M, + N212)n-10 (y / p)l’” sin no-l Y-l (1) (3.11) 

The contact stresses Us (r, 0) at the wedge apex are determined by the residue of 

their transform h (1 + x) p B (p) at the first pole p = p to the left of the imag- 
inary axis. According to (2. l), (3.1),(3.2),(3. ‘7) and (3.8), us (r, 0) = 0 (r-p-l) as 
r-+0. If A, = 0, then as in the symmetric problem, p = a,, and a power singular- 
ity appears for a > cc*. If A 2 # 0, then p equals a, or o + 1 , and then as o + 

- 1 - 0 (d is a constant) 
ue (r, 0) -+ dr-1+o 

Let us consider the case p = 0, y > 0. We set 

FI (P) = 7% (P + 1) (P - 0) (P - 0 - 1) 

Gh(1+x)tg(‘/zn:loI-‘p) 

F2(P)=-&kT& 

(3.12) 

(3.13) 

We write the solution of (2.8) as 

C (P) = Co ~P)M I~-1 ctg (no-‘p) + A, + cos (m.vlp)Z (p)] (3.14) 

C,(p) = QP/i@ I? (7) r (“fi-p) I?(*) sin $-X(p) (3.15) 

Q = Gh (1 + x)x-ly-l 1 o I-3 

evaluating the functions X (p) and Z (p) by means of (2. 11) - (2.15). Since Mm = 0, 
we obtain from conditions (1. 9) and (1. 10) 

Al = 2N2ar10 sin ~cJJ-~X-~ (0) (3.16) 

A, = (Nsls - N212 - M2) coQ+' 
J? (- 0-l) C (- 20-l) sin (QJCO-~) X (1) - 

-=+z(l)]cos + (3.17) 
7CX (0) 

The stresses bs (r, 0) at the wedge apex remain the same as for fi # 0. For large 
1 63 1 , it is necessary to set in (3.14) 

FI (P) = 
rx(p+1) (P--o)(P------1) 

6% (1 + ~1 
ctg np, F2 (p) = - w (3.18) 

c,(p)=~(~~w~)~~~r(o+~-p)r(~)~~~~x~~~ (3.19) 
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A2 = 2 (Nsh - Nzia - Ma) (Q 1 o I)’ ’ oo2 
nr (- o-l)r(- 2cJrl)T(1) X(i) 

without altering the remaining functions and the constant AI. 
Let 61 E i-1, 0). Then the terms with coefficient As in the solutions (3.7) and 

(3.14) do not satisfy condition (1) (as is already noticeable in (3.12)) since the functions 
ctg [no-l (p - I)] and r (1 -to-‘- o-lp) have poles at the point JJ = i -!- no 

(n is the integer part of 1 co 1-l). If A, = 0, these solutions are extended to the in- 
terval o under consideration. but Ms -I- NJ, = 0 therein for p > 0 according to 

(3. ll), for example. In order to avoid such a constraint we construct a new solution 
(2. l), (2.2),(3.1),(3.2) in addition to that under consideration, for the homogeneous 
problem with one constant A,* in place of A,, which differs from this latter by just 

the location of the contour L ,the line Re p = A*. Assuming k*>l+m, h,* > 

A*, we write the solution of (2.8), (3.13) for f (p) G 0 in the case fi # 0 as 

C (p) = A,*Tcw-‘p (p - I)@ / y)“@ sin [no-l (p - 1)1X* (p) (3.20) 

X* (p) = F,-l (p)Y* (p) (o + h,* -c Rep < A,*) (3.21) 

X* (p) = Y* (p) (A,* -c Re p < &* - 0) (3.22) 

Y* (p) = exp - & 
1 s 

ctg n ‘f, n) In F, (t)dt) 
A,.--tm 

(3.23) 

It is easy to verify that it satisfies conditions (1) and (2) if there are no poles or zeros 
for the function Fs (p) in the strip 0 ( Re p ( &*. If such there are and they alter 
the index of the function F, (p) as L is shifted by &* from the imaginary axis, thenit 
can again be made equal to zero by multiplying F, (p) by tg’ np. The solution for 

/3 = 0 is constructed in an analogous manner taking account of (3.15). If o > -1, 
then A, can be found by means of (3.10). if o = -1, then 

A = Nz + Ns .- (1 + x)-l (Nr cos 31 + Si sin a) , A2*X+ (0) 
1 

‘7(0)1~2(0)--1 TL -?- x (0) 

(3.24) 

X* (0) = Y* (no)~fl F,’ (s ) o I) 
.?=l 

In the whole range - 1 < 0 c 0 

A2* = (M, + N,Z,)(y / /3)“” [I’* (1)1-l (3.25) 

Let o > 0, 1, = 0. As for o E [i, 0), we shall seek the solution as the sum of 
integrals (2.1) taken over the contours (a) Re p = h > 0 and (b) Re p = ii* > 1 
and corresponding to the cases of (a) all forces except M,, Ms acting on the reinforced 
wedge and (b) only the moments M,,, &fs acting. Therefore, f (p) z 0 for problem 
(b) in (2.8). 

If fi # 0, then for all o the solution of this equation is expressed for problem (a) by 
(3.7) with A, = 0, (3.8),(2.24),(2.12),(2.15),(3.6) (3.3) -(3.5) and by (3.20) for 
problem (b), where 

x* (p) = F,-l (p)Y* (p) (I< Re P< i +a) (3.26) 

x* (p) = Y* (p) (I -w<RRep<i) 

Here it is assumed for simplicity that the function F, @) defined by (3.6) and (3.3) 
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has no poles and wms in the strip 0 ( Re p < 1; this is valid in every case for 
a<l/s n. Itis~ibleto~t AI* = 1 in(3.23) for Y* (p) - The constant A,* 

is found from (3.251, d, from(3.10) for 0 # 1 and from (3.24) for 0 Z 1, where 
x* (0) = F (1)X* (1) must be understood as the analytic continuationofthe function 
X* (p) atthepoint p = 0. NOW the forces Mo, N,, whose magnitudes depend on 
AIT As* and can be found by integrating the stresses ur (r, 0) with respect to 8 as 
r -+ 0 , act on the wedge apex together with M,, IV, . 
If B = 0, then we have for the problem (a) for all o 

C (p) = Co @) sin ho-1 (p + I)ltA, sin-” (nw-‘p) + 2 @)I (3.27) 

The functions C,, (p), X (p) and 2 (JI) are determined by (3.15),(2.24),(2.12),(2.15), 
(3.13),(3.3)-(3.5), where in (2.15) 

Cr, Ip) = C, 01) sin [no-l fp - +)I 

For the problem (b) with w E (0, 11 

C tP> = d,*C, (p) 0-l ctg (wJ+~) 

and with 61 EZ (f, oo) 

(3.28) 

C (p) = d,*C, (p) 0-l sin [nw-’ ($3 + 1)1 sin-l (ZO-rp) (3,291 

Here the function C, (p) is determined by (3.15) in which X (p) must be replaced by 
the function X* (p) evaluating it by means of (3.26),(3.23) and (3.13) for A* = ‘i. 

In the cake of large 6.1 , it is expedient to use, in the problems (a) and (b), the factori- 

zation (3.18) and the solution (3.19) which have a limit as o --f co , in order to improve 
the convergence of the integrals (2.12) and (3.23). 

4, We consider the problem (1.1) - ( I., 10) and its solution for w = &- 00. Let 
~ZZ_....- cm. Then, the bar becomes inextensible and inflexible in the interval 0 < 
r \< 1, and for r > 1 its stiffnesses are determined only by the members fir and prs. 
Therefore, the main problem for the reinforced domain goes over into a mixed problem 
for a homogeneous domain with the fundament~ boundary conditions (1.31, ( l-4),( 1.7) 
and the mixed conditions resulting from (1.5) and (1.6) 

(a / dr)[u o”, 0)l = 0 (r E LO, 11) (4.1) 

P ~r$u@,O)+hzrs(~,O)= -&ocr- 2s) (I.E(~,oo)) (4.2) 

d2 / $3 [Z’ (?‘, o)l = 0 (F E IO, $1) 14.3) 

p$s $ u 0.7 0) - hoe (r, 0) = Ns6 (r - 13) (r E (1, w)) (4.4) 

In the case of symmetric loads, the function C (PJ has the form (2.13),(2.17). Passing 
to the limit as o + - oo in (2.10) -(2.15) (the conditions of the theorem of passage 

to a limit under an integral sign are satisfied here), we obtain for p # 0 

C (p) = C,(p) M + 2 (~11, Co (~1 = X (PI (4.5) 

X (p) = F2-l (p) Y (p), 2 (p) = w (P) - El (P> (Re P < O) t4a6) 

X (P) = Y (p), 2 (p) = W (p) We P > 0) (4.7) 
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-im 

W(p)=+2 \ - ‘O” k?(t) dt (4.8) 
t-p 

-im 

g (PI = Corn1 (p)[eS@ - 2Gh (1 + 4A,+As-1q (p)l (4.9) 

where Fs(p)isevaluatedbymeansof(2.9), e=lforZs)l,e=OforIs<1. 

For p = 0, i.e. in the problem of an absolutely rigid bar of unit length welded to a 
,wedge, the function Fz (p) must be evaluated by means of (2.22). From (2.23), we 
obtain 

cll (PI = aer (l/s + n-*p)r-1 (1 + n-lp) x (p) 

while the other equalities (4.5) - (4.9) and (2.21) retain their form. 
If p # 0 in the skew-symmetric problem, we obtain according to (3.7) - (3.11) 

c (P) = c, (PM, + 4 (P - 1)-l + 2 (P)l 
ccl (P) = (p - 1) X (P) 

(4.11) 

A Ma + N&a 
1 

= Nz + Ns - (1 + x)-i (Ni cos a + 5’1 sin a) 

~w1~2(0~--11 
, A= 

y (1) 

Here we have (4.6) - (4.8),(3.3),(3.6) for Z (p) and X (p). where 

g (P) = - co-’ (p)[N,U + 2Gh (1 + x)pA2-A3-’ q (p)] (4.12) 

If b = 0, then we obtain by virtue of (3.14), (3.16) (3.19) 

C (P) = Co (P) [AIn-‘P-’ + A, + 2 (p)l 
co (p) = --l/a f/np (p + 1) -‘I? (V, + n-lp) r-1 (1 + n-‘p) x (p) 

As _ _ 4 (Mz + Nals - Nsls) I (i + n-‘) 

V/nr (i/z + n-1) -X (i) 

The functions X (p) and Z (p) are expressed as (4.6) -(4.8),(3.18) and (4.12). 
In the version o = 00 the bar becomes nondeformable for r > 1 , has the stiffnesses 

pr and /3rs for T < 1 . The intervals [O, 11 and (1, oo) must be interchanged in the 
mixed conditions (4. I) - (4.4) governing this problem, while the main conditions are 
retained. If p # 0 the solution of the symmetric problem is given by (4.5) - (4.9), 

(2.27),(2. 9); while the intervals Re p < 0 and Re p > 0 in (4.6),(4.7) change 
places, E = 1 for 1s < 1 and e = 0 for 1s > 1. If p = 0, then in contrast to 
the preceding function, C, (p) and Fz (p) h ave the form (2.23) and (2.22). The solu- 
tion of the skew-symmetric problem is constructed in an analogous manner. 

6, Mixed problems of the form (1.3), (1.4)) (1.7)) (4.1) - (4.4) are usually solved 
by the Wiener-Hopf method [13]. If the functional equation to which they reduce is con- 
sidered as a Riemann problem [lo] or as a linear conjugate problem [14] (see [15], say), 
then solutions agreeing exactly with the limit solutions in Sect. 4 can be obtained by the 
Gakhov formulas. To do this, it is just necessary to reduce the index of the coefficient 
to zero in place of the fractionally-linear [lo, 141 and polynomial factors [15] (for 0 = 
0, when it is not zero) by using the function tg np. In contrast to the function (1 - ps)v* 

[15], for elementary factorizability as the ratio between four gamma functions, it con- 
serves the exponential convergence of the integrals (4.8), (2.22) and yields a solution in 
the most efficient form. 
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It is clear that the method elucidated above can be applied to any mixed problems 
of elasticity theory which are solved in closed form bythe Wiener-Hopf method. How- 

ever, two kinds of problems must here be differentiated. 
Among the first type examined in Sect. 4, are mixed problems for strips, circular <and 

wedge stamps, for cylindrical, conical and wedge absolutely rigid coverings making con- 

tact with appropriate elastic domains, and also equivalent problems of symmetric plane 
cracks. They and their solutions are the fundamental limit problems and solutions for a 
strip, wedge, cylinder and cone (in particular, a half- plane and half-space), completely 

reinforced by variable stiffness bars, plates and shells. 
The second type combines the mixed problems for elastic domains, partially reinforced 

by elastic bars, beam slabs, shells of constant or linearly increasing thickness, and prob- 
lems with rectilinear nonsymmetric, cylindrical and conical semi-infinite cracks. These 

problems can be reduced to difference equations form~ly by inserting the b~nda~~on- 
ditions of a fictitious exponentially increasing “stiffness”. But, what is of greater interest, 
they are all obtained in the limit as o 3 2 co , from the fundamental problems for the 
corresponding completely reinforced domains in which a Winkler layer with variable 
coefficients of the foundation K(r) varying as r” is sandwiched between an elastic thin- 
walled reinforcing element and an elastic spatial domain, or for domains in which the 
Winkler layer fills the infinite crack. 

In problems for conical and wedge domains when the initial elasticity theory equa- 

tions are transformed according to Mellin, the bending stiffnesses of the reinforcing bars, 
plates and shells must be given in the form (1.2), the tensile, shear and torsional stiff- 
nesses must be given in the form (1.1) in problems on the bending .of wedge plates rein- 
forced by bars, and the coefficients of the foundation of the Winkler layer are expressed 

bY K (~1 = (Or + rr”+“)+ 

The nature of the change in stiffness D along the longitudinal coordinate z should 
be independent of the kind of stiffness in problems for rectangular and cylindrical do- 

mains when using a two-sided Laplace transform, i.e. for both bending and tension 

D (2) = fi + ye”% 

The foundation coefficients X (5) are 

Problems for domains with a variable stiffness Winkler layer, which reduce to differ- 
ence equations solvable by quadratures, will be considered separately, and in a somewhat 

different formulation. 
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An identity generalizing the Prager-Synge relationship [l, 21 in linear elasticity 
is deduced for a certain class of nonlinear elasticity laws. It permits estimation 
of the energy norm of the difference between some statically admissible stress 
field u and the true field a0, as well as between some kinematically admissible 
displacement field u and the true field u”, in terms of the energy norm for the 
diffefence between the fields u and (I (u) (a (u) is the stress field generated by 
the field II). By using this identity, under definite constraints, it is proved that 
the root-mean-square value (over the volume of a plate) of the error in the solu- 
tion of the plate equations derived from the volume problem by means of the 
Kirchhoff hypothesis, does not exceed ch’l*, where c is a constant and h is the 
relative thickness. The Prager-Synge relationship [l, 21 was used in [3, 43 to es- 
timate the error in linear shell theory. The results are related to [l - 73. 


